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a  b  s  t  r  a  c  t

The  blood–brain  barrier  (BBB)  restricts  the  delivery  of  drugs  into  the brain.  Different  strategies  have  been
developed  to  circumvent  this  obstacle.  One  such approach,  the  osmotic  BBB  disruption  (BBBD),  has  been
under  pre-clinical  study  since  the 70’s. Typically,  qualitative  ex  vivo  assessment  of  the  extent  of  BBBD  has
been performed  using  Evan’s  blue  staining  technique.  In  this  study,  we  describe  a  simple  quantitative
technique  based  on  albumin  indirect  immunohistochemistry  to  measure  the  extent  of  BBB  breach.  Thirty
Fischer  rats were  assigned  to one  of 6 groups:  a control  group,  and  BBBD  groups  with  escalation  in  IA
mannitol  infusion  rate:  0.06, 0.08,  0.10,  0.12  and  0.15  cc/s.  Fifteen  minutes  after  the  BBBD  procedure,
the  animals  were  sacrificed,  brain  harvested  and  sections  stained  for albumin.  Using  an  image  analysis
software,  isolated  albumin  staining  pixels  were  expressed  as  a fraction  of  the  treated  hemisphere.  This
ratio  was  used  as  a percentage  value  in  the  intensity  of  the  BBB  permeabilization.  All  sections  studied

harbored  staining,  averaging  0.37%  for the  controls  (group  1),  5.69%  for group  2  (0.06  cc/s),  10.44%  for
group  3 (0.08  cc/s),  6.99%  for group  4  (0.1  cc/s),  18.50%  for  group  5 (0.12  cc/s)  and  reaching  61.70%  for  group
6 (0.15  cc/s).  Important  variations  were  observed  between  animals.  A  threshold  effect  was  observed,  and
animals  in  group  6 presented  a significant  increase  in BBB  permeabilization  compared  to  the  other  groups.
We  hereby  detail  a simple  technique  that  can  be  applied  to quantitatively  measure  the  extent  of the  BBB
breach  notwithstanding  the  pathological  process.
. Introduction

The BBB is a complex physiological entity located at the level of
he cerebral endothelial cell presenting a surface area of approx-
matively 20 m2 in the human. The BBB derives its restrictive
unction in delivery from multiple anatomical and physiological
haracteristics, such as the presence of tight junctions, the expres-
ion of different efflux pumps, a luminal negative charge of the
ndothelial cells, the presence of basal lamina and of the astro-
ytic podophilic projections. Altogether, the BBB limits the passage
f water soluble molecules presenting a molecular weight greater
han 180 Da (Kroll et al., 1996; Pardridge, 2005). In fact, it is esti-
ated that 98% of all the therapeutic molecules cannot reach the
rain parenchyma in pharmacologically-relevant concentrations
Neuwelt et al., 2008). This ‘neurovascular unit’ thus impacts the
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treatment of different pathologies by greatly limiting the entry
of therapeutic molecules and restricting the arsenal at our dis-
posal. As a consequence, a significant number of molecules with
the activity in vitro, such as antineoplastic agents against glioma
cell lines, have limited efficacy because of limited brain bioavail-
ability in vivo. Therefore, the concept of transitorily breaching the
permeability or the function of the BBB to increase delivery of ther-
apeutics is highly relevant (Boyle et al., 2004; Bradford et al., 1997).
Different approaches have been developed to circumvent the BBB,
such as intra-arterial infusion of hyperosmolar solutions, infusion
of bradykinin receptor agonists and convection enhanced delivery
(Kraemer et al., 2002). The intra-arterial infusion of hyperosmo-
lar solutions, or blood–brain barrier disruption (BBBD), has been
studied and characterized, both in clinical and pre-clinical studies
(Blanchette et al., 2009; Fortin, 2003, 2004; Fortin et al., 2005; Fortin
and Neuwelt, 2003; Kraemer et al., 2002; Kroll and Neuwelt, 1998;
Neuwelt, 1989, 1980; Neuwelt et al., 1980, 1986; Pardridge, 2005).
Our clinical team commonly uses this approach in the treatment of

primary CNS lymphoma, malignant gliomas and brain metastasis
(Fortin et al., 2005, 2007).

The BBBD procedure involves the intra-arterial infusion of
a hyperosmolar solution (mannitol 25%) to produce a transient

dx.doi.org/10.1016/j.jneumeth.2012.03.012
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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Fig. 1. Schematic illustration showing the 3 areas as defined and cut using the brain
26 M. Blanchette et al. / Journal of Neu

ncrease in the permeability of the BBB. This is typically fol-
owed by the intra-arterial infusion of the therapeutic agents (e.g.
hemotherapy). The effectiveness of the procedure can be influ-
nced by different factors, including hemodynamic variables, type
f anesthesia and rate of hyperosmolar solution infusion (Fortin
t al., 2004; Remsen et al., 1999). It is thus paramount to monitor
he degree of the barrier permeabilization obtained after a proce-
ure, as it can be highly variable from patient to patient, and even
ith repeated procedures in the same subject.

In the clinic, a CT scan with an IV radiographic contrast agent
nfusion is performed after a BBBD procedure to evaluate the degree
f the BBB permeabilization in a semi-quantitative fashion, based
n an analog scale. The validity of this monitoring approach has
een established (Neuwelt et al., 1980; Roman-Goldstein et al.,
994). Using this technique, some authors have reported an asso-
iation between the degree of the BBBD as a surrogate of drug
elivery, and survival of patients bearing primary central nervous
ystem lymphomas treated with the BBBD procedure (Kraemer
t al., 2001).

In pre-clinical studies however, the most widely used approach
o study the extent of the BBBD process is an ex vivo technique
equiring the intravenous infusion of a 2% solution of Evans blue
rior to the BBBD (Fortin, 2003, 2004; Kroll and Neuwelt, 1998).
his in vivo marker binds tightly but reversibly to albumin, which
oes not normally cross the BBB (Neuwelt, 1989). Thus, the increase

n the BBB permeability allows diffusion of the albumin-Evans blue
omplex into the brain parenchyma. Once the brain is harver-
ted after the BBBD procedure, the intensity distribution of the
lue coloration in the treated hemisphere can than be qualitatively
ssessed, and a visual score is attributed (Fortin, 2003). The qualita-
ive and subjective aspect of this approach decreases the reliability
f this evaluation method (Fortin, 2003, 2004).

Recently, we developed a new technique to monitor the
ynamic process of the BBBD by DCE-MRI in pre-clinical research
Blanchette et al., 2009) that possesses the invaluable advantage of
llowing in vivo assessment. However, not all research groups have
ccess to an animal MRI  scanner in their facilities, and thus ex vivo
ualitative or semi-quantitative techniques to evaluate the efficacy
f the BBBD procedure remain pertinent and useful.

To improve the knowledge of the BBBD process, its evaluation
as to be revisited. A quantitative measurement of the degree of
BBD would allow a better analysis in the intensity of delivery
gainst efficacy in any given experiment regarding CNS treatments.
ccordingly, in the design of new glioma treatment strategies, it

s essential to distinguish between the different factors at play,
uch as the delivery impediment and the efficacy of the therapeutic
olecule. Only by isolating and analyzing theses two  variables indi-

idually will we be able to optimize the design of new treatment
pproaches. It is common knowledge that albumin does not cross
he normal BBB, and that it is easily labeled by indirect immuno-
istochemistry. The aim of this study was thus to develop a simple,
ccurate and quantitative technique to measure the intensity of
elivery produced by the BBBD procedure.

. Materials and methods

The experimental protocol was approved by the institutional
thical committee and conformed to regulations of the Canadian
ouncil on animal care.

.1. Study groups
Thirty adult male Fischer rats weighing 250 g were obtained and
ept under controlled conditions in our facilities. The animals were
andomly assigned to one of 6 groups (Table 1). Group 1 acted as
matrix. The section B was used for the study.

the control group, and was  exposed to an intra-arterial saline infu-
sion as a sham BBBD procedure. Groups 2–6 were treated using
the BBBD technique (Fortin et al., 2000, 2004) at different rates of
intra-arterial mannitol infusion, in a stepwise increment fashion,
from 0.06 to 0.15 cc/s (0.06, 0.08, 0.10, 0.12 and 0.15). Typically, a
rate of 0.12 cc/s is adequate to produce a BBBD in these animals
(Fortin et al., 2004).

2.2. BBBD procedures

Procedures were performed under general anesthesia using
an intra-peritoneal injection of ketamine (87 mg/kg) and xylazine
(13 mg/kg). Endotracheal intubation was  performed under direct
visualization of the trachea with a 18G insyte catheter. Using an
aseptic technique, the right carotid complex was  surgically exposed
and the right external carotid artery was  catheterized in a retro-
grade fashion with a PE-50 polyethylene tubing, so that the tip of
the catheter was lying just above the bifurcation. Prior to mannitol
infusion, a clip was  applied on the common carotid artery to limit
backflow of the administered solution (Fortin et al., 2004). Manni-
tol (25%) was then infused using a micro-infusion pump, at the rate
prescribed by the study group to which the animals were assigned,
for a constant infusion time of 30 s (Table 1).

2.3. Evans blue staining, brain harvest and albumin indirect
immunohistochemistry

For comparison purpose, 1 animal from each group was also
infused with a 2% solution of intravenous Evans blue (2 ml/kg),
prior to the BBBD procedure. Fifteen minutes after the procedure,
while still under general anesthesia, the animals were sacrificed
by an intracardiac formaldehyde perfusion, and brains were har-
vested and preserved for 48 h in formaldehyde solution. The brain
specimens were cut in 3 coronal sections using a brain matrix and
section B was embedded in paraffin (Fig. 1). The paraffin-embedded
blocks were cut in 5 �m coronal slices with a microtome. Albu-
min  indirect immunohistochemistry was  performed, using a goat
IgG antibody fraction against rat albumin (1:200, MP Biomedicals,
OH, USA) incubated overnight at 4 ◦C in a humid chamber. Sections
were incubated 1 h with HRP-conjugated mouse anti-goat antibody
(1:100, GE Healthcare, Buckinghamshire, UK) at room temperature
in a humid chamber. Both antibodies were diluted in TBS con-
taining 10% non-fat powdered milk. As a negative control, a set of
sections was not exposed to the primary antibody. Albumin detec-
tion was revealed by diaminobenzidene (DAB) (Roche, Qc,  Canada).

An hematoxylin counterstaining was performed; slides were then
dried, mounted and analyzed.
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Table 1
Animal groups.

Groups 1 2 3 4 5 6

Infused solution Saline Mannitol Mannitol Mannitol Mannitol Mannitol
Infusion rate (cc/s) 0.12 0.06 0.08 0.10 0.12 0.15
n 4  4 4 4 4 4a

a An animal was  excluded due to the mortality during the procedure.

Fig. 2. Description of the steps involved in the calculation of the intensity of delivery ratio used in this study. (A) The albumin indirect immunohistochemistry source image,
displaying discolored areas in the treated hemisphere. (B) The image has been analyzed to identify pixels above a fixed threshold corresponding to the immunohistochemistry
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it is in neuro-oncology, or in other CNS pathologies. Kraemer and
al. are the only group that has so far addressed the relationship
between intensity of delivery and the outcome, in a population of
patients bearing primary CNS lymphomas (Kraemer et al., 2001).
taining. These pixels are retained as the red overlay. C) After having defined the p
ight  hemisphere), the red overlay has been added to the image for final analysis.
reated  (right) hemisphere (blue overlay).

.4. Image analysis

All sections were digitized and processed using the software
igma Scan Pro, version 5 (Hallogram Publishing, Aurora, USA).
riefly, the outlining of the brain parenchyma was  manually drawn

or each hemisphere, taking care to exclude the ventricles and sub-
rachnoid spaces. The area defined in this manner was  converted
nto the number of pixels. Albumin indirect immunohistochem-
stry produces a brownish discoloration that can be isolated from
he hemisphere using an intensity threshold set to retain the pixels
bove a certain value (Fig. 2A and B). The number of stained pixel
n the treated hemisphere was calculated (Fig. 2C), and reported as
he percentage of stained pixels over the treated hemisphere. This
atio value was used as an indicator of the intensity of delivery.
tatistical analyses between the six groups were performed using

 one-way ANOVA (p < 0.0001) followed by a Dunnett’s Multiple
omparison test (  ̨ < 0.05).

. Results

Mean staining values obtained for each animal are presented in
ig. 3. As can be appreciated from this data, all groups depicted sig-
ificantly different staining values. As expected, the saline infused
nimals (group 1) presented insignificant albumin staining, with
n average of staining ratio of 0.37%. Animals from groups 2–6
resented increased staining when compared to the control group
Fig. 3). However, this difference was statistically significant only
hen mannitol was administered at a rate of 0.15 cc/s (group

, p < 0.0001). As can be appreciated from the standard devia-
ion shown in Fig. 3, a significant inter-individual variation was
bserved within each group. Two animals from group 5 displayed
ery low staining, thus significantly lowering the average intensity
easured in that group. As the BBBD process has typically been

onsidered an all or none phenomenon, this hints at the possibility
hat the osmotic threshold was not reached at 0.12 cc/s in these two
nimals.
Fig. 4 presents a composite figure of a representative animal
rom each group depicting Evans blue staining of the brain surface,
nd a corresponding coronal slice. In this figure, significant stain-
ng can be appreciated for animals of groups 5 and 6, but not so
rea of each hemisphere (green overlay is left hemisphere, whereas blue overlay is
ts are expressed as number of stained pixels (red overlay) as a fraction (%) of the

for the animals included in groups 2–4. Using the albumin stain-
ing described herein, we  found permeabilization percentage mean
values of 5.69% (group 2), 10.44% (group 3) and 6.99% (group 4)
respectively.

4. Discussion

Osmotic BBBD is one of the strategies designed to bypass the
blood–brain barrier, and improve delivery of therapeutic molecules
to the central nervous system. The aspect of delivery is under-
emphasized in the literature, and has not always received the
proper attention it deserves (Pardridge, 1997, 2005). Even now,
delivery across the BBB is overlooked as an important cause of fail-
ure in the treatment of many CNS diseases (Fortin et al., 2005).
Admittedly, researchers working in the field of delivery have not
yet been able to establish a firm relationship between the extent
of delivery and a potential clinical benefit for the patient, whether
Fig. 3. Graphic expressing the staining percentage of the treated hemisphere
obtained for each group (mean ± SD). The mean of each group was significantly dif-
ferent (p < 0.0001). Only group 6 was significantly different from the control group
(*,  p < 0.05).
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ig. 4. Whole brains and corresponding coronal slices of samples extracted from on
n  Evans blue IV administration. A sequential increment in discoloration is observe

n that paper, a relationship was established between the extent of
elivery, as a function of the intensity and the number of BBBD pro-
edures, and the survival of patients. Recently, our group has shown

 prolongation in the median survival of patients with primary
nd secondary brain tumors treated by way of BBBD procedures to
ncrease chemotherapy delivery (Fortin et al., 2005). Unfortunately,
hese clinical studies were not randomized in design, and thus bear
nherent weaknesses prohibiting a firm conclusion as to the rele-
ance of BBBD in impacting favorably the outcome of patients. As
re-clinical studies have convincingly demonstrated the potency of
he procedure to increase delivery of chemotherapy and of various
herapeutic molecules across the BBB, the demonstration that this
ncrease in delivery impacts tumor response and patient survival
ow needs to be established. Consequently, pre-clinical studies
esting new drug candidates must correlate the drug delivery with
he treatment efficiency using surrogates as tumor size and sur-
ival. The usual histological techniques to monitor the opening of
he BBB are either qualitative or semi-quantitative (Evans blue).
he Evans blue technique involves the infusion of an IV Evans blue
olution prior to the BBB manipulation. The marker binds albumin,
hich has a 60 kDa molecular weight, and thus typically does not

ross the BBB (Fortin, 2003). Once the procedure is performed, the
nimal is euthanized and the brain harvested, an analog scale-based
valuation of the intensity and distribution of the bluish coloration
s used to evaluate the degree of the BBB permeabilization. Needless
o say that this approach involves a certain degree of subjectivity.
adioactivity can also be used to grossly monitor the extent of deliv-
ry (Bhattacharjee et al., 2001). This strategy implies an exposure
o radioactivity and remains semi-quantitative, limiting the con-
lusion when studying the contribution of the extent of delivery
gainst other variables such as survival.

The present report details a simple and reproducible technique
hat allows collection of objective data mirroring the extent of
elivery, based on albumin indirect immunohistochemistry. This
llows the production of a conservative estimate on the extent of
elivery, as albumin is a large protein. This estimate is expressed

s a percentage of the treated hemisphere on a given coronal slice,
nd can also be used as a composite score reflecting global delivery,
y simply summating the scores obtained on multiple contiguous
lices, enabling spatial distribution studies. As the brain samples
esentative animal of each group exposed to different rates of mannitol infusion and
 a maximal coloration is reached at 0.15 cc/s.

are cut in a standardized fashion using a brain matrix, the num-
ber of slices is always consistent, thus ensuring that the composite
score is reproducible.

This concept has already been exploited in the past by Vorbrodt
et al. (1994) in the study the dynamics of BBBD. These authors
used quantitative immunogold labelling against albumin in scan-
ning electron microscopy. The numerical value was  based on the
square micrometer density of gold particles, and was used to detail
the dynamics in the BBB permeabilization across different com-
partments. However, as the image analysis was performed on
electron micrographs, the method described by Vorbrodt et al. did
not allow a global estimation of delivery such as the analysis we
performed.

The evaluation technique we  describe herein could be useful in
the assessment of new CNS delivery techniques, as well as in the
study of pathologies that induce increases in BBB permeability such
as stroke or inflammatory conditions. However, in these patholo-
gies the BBB permeability does not extend to the overall studied
hemisphere; thereby the staining ratio has to be corrected for focal
edema using the formula developed by Swanson and his colleagues
(Swanson et al., 1990).

The major drawback of this approach is the fact that it cannot be
accomplished in vivo, and still requires the sacrifice of the animal. As
we have developed and reported a technique allowing the real-time
monitoring of the BBBD permeability and permiting the evaluation
in the intensity of delivery by DCE-MRI (Blanchette et al., 2009), we
would evidently suggest the use of this ex vivo static approach as
an alternative monitoring technique whenever an in vivo approach
cannot be deployed.

As delivery strategies to the CNS are being developed and
increasingly used, the ability to measure the improved delivery of
different molecules should be reproducible, easy to perform and
allow quantification to become a validated method of measure-
ment. Investigators also need to demonstrate that this increase in
delivery impacts other surrogates, such as response and survival,
before the concept of increased delivery across the BBB can be con-

sidered a standard of treatment. The simple technique described in
this paper allows an evaluation of the extent of BBB breach notwith-
standing the cause, whether it be iatrogenic (BBBD via different
means) or pathological (inflammation, tumor or ischemia).
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